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Multidisciplinary Aerospace Systems Optimization

(NASA Computational Aerosciences Project)

Srinivas Kodiyalam

1.0 Introduction:

Multidisciplinary Design Optimization (MI)O) embodies a set of methodologies which provide a means

of coordinating efforts and possibly conflicting recommendations of various disciplinary design teams

with well-established analytical tools and expertise [1,2]. MDO involves multiple disciplines,

engineering, business and program management, often with multiple, competing objectives. These

disciplines may just be an analysis code which contains a body of physical principles or in addition, they

may possess some intelligent decision-making capabilities. In an attempt to address the issues involved

with the MDO process, formal methods have been derived, making use of consistent mathematical

concepts, unique organizational structures, and alternative system representation techniques. While the

architecture of some of these MDO methods which we will use may not be entirely intuitive, their

solution approach provides for a more practical and efficient path to reaching an optimal solution or at

least an improved solution over the conventional sequential, all-in-one approaches.

Optimal design of complex systems, more specifically, aerospace systems, is increasingly becoming a

geographically distributed activity involving multiple decision teams and heterogeneous computing

environments. Hence within this environment, MDO processes will need to be executed necessitating, in

addition to a range of design space exploration functions such as formal MDO methods, numerical

search strategies, approximation methods, sensitivity methods, and trade-off studies, a flexible MDO

environment that would support:

1. Meta-computing consisting of a collection of high performance machines that can provide the

aggregate computing powers necessary for solving large-scale, multidisciplinary optimization

problems.

2. The ability to easily access remote analysis tools as well as easily bringing together multiple analysis

tools into an integrated system analysis while hiding the details of data management from the user.

This includes visually linking data between different analysis components on different platforms.

3. Tool interfaces based on standards such as CORBA and COM to increase the usefulness and reuse

of each disciplinary analysis tool in the distributed MDO environment.

4. Make MDO easy to use.

Today, the simulation based design process relies heavily on complex computer analysis and simulation

codes such as finite element analysis and computational fluid dynamic analyses to improve the product

design. These time consuming and expensive analyses are repeatedly invoked during optimization

malting the design exploration and multidisciplinary design optimization time significantly long, if not

prohibitive. Two solutions are possible to make these problem solution times tractable:

(i) Use of Approximation Models (also referred to as Surrogate Models) for the design objectives and

constraints in conjunction with the numerical search process. Since these approximate models are
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inexpensive to evaluate for a new set of data or values assigned to design variables, we can afford to

evaluate approximate responses many more times without having to worry about the computational

resources. Consequently, a number of different types of studies including design optimization using high

fidelity analysis become possible. The purpose of these studies must be extraction of data that are

directly useful for the design decisions.

(ii) Use of High Performance Computing (HPC) servers with a large number of processors to enable

multiple levels of parallelism (coarse and fine grained parallelism) for higher throughput computing and

faster solution turn around times.

In this project, the following technical aspects of MDO has been implemented and investigated on

certain realistic aerospace design problems.

- Design space sampling strategies in conjunction with concurrent processing on Origin 2000 I-IPC

server;

- Design space approximation using Kriging metamodeling procedure and subsequently optimization

with Kriging models

- Design space Pareto trade-off analyses using Kriging models

- Design process integration using commercial-off-the-shelf (COTS) integration framework, Model

Center.

The applications include:

- Air Borne Laser (ABL) Optical Bench MDO for structures, thermal and optical line of sight

disciplines;

- Conceptual design of a supersonic business aircraft involving Aerodynamics, Structures and

Propulsion disciplines.

2.0 Description of Technical Methodology:

2.1 Design Space Sampling Strategies:

The two sampling methods proposed below are variations of Design of Experiment (DOE) procedures

for using a fixed number of processors and operating concurrently [3]. The goal of these proposed

methods is to have a reasonably uniform coverage of the design space to maximize the information

gathered about the design space characteristics. A Monte Carlo simulation with a uniform probability

distribution and a fixed number of points would be analogous to the proposed methods. In addition,

similar to the DOE methods, these methods have been motivated by the inability to handle the

computational cost involved with the analysis of the full factorial number of design points.

2.1.1 Method 1 - Uniform Dispersal of Design Points:

Assume that there are N variables, X_, i=l,N to define the N-D space, and, NP processors available

for concurrent execution. Li and Ui define the lower and upper bounds on the variables.

NDP is the number of design points to be generated and is usually equal to the number of available

processors (NP).



Introduceanon-dimensionalvariable,Vi, suchthat:

Xi = Li + (Ui - Li)*Vi

Now we have replaced the X space with the V space in which all the V variables vary from 0 to 1.

Assume that the design space volume contains DN little cubes, each cube having the side length of S =

l/D, assuming that we have normalized the interval of interest along each of the N-D axis to length 1,

and allowed D levels. The sampling of each little cube is at the cube centers.

The number of design points, NDP, in a factorial pattern is

NDP = DN

Inversion of the above provides for D as follows:

D = (NDP) vN

The mesh density, S, measured from a point to its nearest neighbor is

S = 1/D (assuming that the normalization to 1 of the interval length).

Now, the algorithmic steps for generating an approximately uniform dispersal of NDP points in the N-D

space is defined as follows:

1) Set counter i = 1;

2) Roll electronic die of uniform probability distribution to generate point Vi

3) Update, i = i+l, Repeat #3, and evaluate dik = (Vi-Vk)/'1/2, where i designates the new point, and

k refers to the previously generated points.

Now, apply this filter:

If dik > = S, proceed to the next Vk;

If dik < S, reject Vi and return to #3.

4) Transform from V space to X space using equation above.

It appears that this simple algorithm would have the effect of generating an approximately uniform

dispersal of NP points in the N-dimensional space owing to the use of uniform distribution in step 2, and

with accidental bunching of points prevented by step 3. The MC with a uniform probability distribution



andafixednumberof pointsshouldcomecloseto meetingthecriterion.

2.1.2 Method 2 - Hgpersphere Method:

1. Assume:

N variables Xi in vector X to define an N-dimensional design space.

NP processors available for a simultaneous execution..

Li and Ui define the lower and upper bounds on the variables.

NDP is the number of design points to be generated and is usually equal to the number of available

processors (NP).

2. Select the "exploration interval" bounded by Ai and Bi, Ai < Bi, and centered on the initial "best

guess" value of Xi = Xio, where

Xio = (Ai + Bi)/2;

Ai > Li; and,

Bi< Ui.

3. Introduce a non-dimensional variable Vi such that

Xi = Xio + (Bi-Ai)/2 Vi = (Ai+Bi)/2 + (Bi-Ai)/2 Vi

4. Next, construct a hypersphere in space V.

Now we have replaced the space X with the space V, in which all Vi variables vary from -1 at Ai,

through 0 at the center, to +1 at Bi. The passage from V to X is provided by eq. 1.

We will now construct a hypersphere in the space V. The hypersphere is defined by a radius vector R

that originates at Xio, or Vi(y=0, and a set of angles, Hi, that vector forms with the axis Vi, i = 1, N- 1.

Note that R and N- 1 angles, not N angles define a point on the "surface" of the N-dimensional

hypersphere.

It is also important to point out that the hypershpere is not to be thought of as having a surface like a 3-

D sphere has. The notion of a surface does not carry from 3D to higher dimensions. It should be

thought of as a sub-domain whose dimensionality is N-l, just as the surface of a sphere in 3D is a 2D

sub-domain. It is the N- 1 dimensionality reduction that carries to higher dimension by virtue of having to

satisfy only a single equation that relates R to Vi on the sphere surface:

R = SQRT(Z Vi/'2); (1)

To handle the hypersphere construction let us establish that



Vi = RcosHi (2)

ConsideringthatVi wasnormalizedto varyfrom-1to 1,R mustbe:

R=I (3)

to keep the hypersphere center at the mid-point of the (Ai,Bi) interval. We use eq.4.2&3 above to

express one Vj in terms of IL Hi, and other Vi's:

Vj = SQRT (1- (Z VIA2), i=l,N, andi <>j)

In the above, the index j may be selected from the set i=I,N randomly (it could also be chosen

judgmentally although it is hard to think of a good reason why to do it that way).

In equation 4.4 there is no safeguard against ('£ VIA2)>1, and that might cause a SQRT run-time error.

In N dimensions, after we have selected j in eq. 4.4, it is necessary to check the satisfaction of the

following condition:

VpA2 + VkA2 <= 1; p=l,N; k=l,N; p <>j; (5)

Even this condition, however, does not guarantee that the sum is less than 1.

A procedure to generate a design point on the surface of an N-D hypersphere R= 1 may now be

written to place NPP points over the hypersphere "surface". NPP = (NP-1)/2 where NP is the number

of processors, because we reserve one processor for the point at the center of the sphere and one half

of the remaining points are to become the nadirs to the points randomly generated.

We place the points by rolling an electronic die (using a random uniform distribution) on the angles Hi

taking advantage of the spherical symmetry. Observe that the interval (Ai,Bi) defined above

corresponds to the diameter of the hypersphere coinciding with the coordinate Vi, hence when the angle

Hi varies from 0 through n, or 0 through 180 deg., the radius R traces a semi-circle arc that spans the

interval.

Specifically, we repeat the following steps for each Hi, except Hi, where the j- index identifies Vj that

was made dependent by eq.4.4:

-1. Initialize all Hi = 90deg, not 0 deg. This sets all cosines to 0.;

0. Roll electronic die (all dice here is uniform distribution) to pick index j in eq.4.4

1. Roll electronic die to pick index i

-- if i <> j accept i and proceed



--if i =j rejectI andrepeatfrom 1topickadifferentvalue

2.Rollelectronicdie(uniformdistribution)to selectavalueHi in the0,180deg.interval.

3. ComputeVi pereq.4.2;

4. Checkallpermutationsofeq.4.5
-- if all satisfied,thenproceed
-- whenthefirstinstanceof eq.4.5violatedis found,rejectHi andreturnto step2 topicka
differentHi.

5.Repeatfrom 1until all(N-1)Hi valuesaregenerated,whilesatisfyingall theeq.4.5constraints.

6. ComputeVj from eq.4.4.

7.ComputeHj = arccos(Vj) assumingthatR=1.Thiscompletesgenerationof N anglesHi.

8.Repeatfrom(1)until allNPPdesignpoints(NPPsetsof anglesHi) aregenerated.

Wehavenowplaced(NP-1)/2pointsoverthehypersphere.Wehaveonepointin thehypersphere
center.To completetheoperationandbringthenumberof pointsupto thenumberof processorsNP,
wereflecteachof the(NP-1)/2pointsto theirnadirsbya simplesignchangein thetransformationfrom
spaceV to spaceX.

X: Xo + (B-A)/2 (-1)Vi : (A+B)/2 + (B-A)/2 (-1)V

Thiscompletesplacementof NPpointsin theX spaceonasurfaceof thehyperspherecenteredonthe
bestguessandwhoseradiuscapturestheintervalof initialinterest.Thepointsarenearlyuniformly
distributedoverthehypersphereowingtotheuseof auniformdistributioningenerationof Hi.TheX
vectorsconstituteinputtotheanalysis.

Theuniformdistributionmaximizestheamountof informationextractedfromthedesignspaceusinga
fixednumberof processors.

2.2 Kfiging Metamodel based Design Space approximation

The mathematics of Kfiging includes a combination of a global model of the design space as well as

local deviations so that the Kriging interpolates the sampled data points [4]. Specifically, it is given by:

k

y(x)- f,(x)+z(x)
/=1



where, the first term f(x) represents the global model characterized by a standard polynomial response

surface model or an artificial neural network and the second term Z(x) is the localized deviations and the

departure from the standard polynomial RSM. Z(x) represents the realization of a stochastic process

with a mean zero, variance (_2 and a non-zero covariance. The covariance of Z(x) that dictates the local

deviations is given by:

In the above equation, R is the correlation matrix, and R(x_, 7d) is the correlation function between any

two of the r_ sampled data points :_ and :_. R is a (r_ x n_) symmetric, positive definite matrix with ones

along the diagonal. The correlation function could be an exponential, gaussian, cubic or such kind of an

approximation function. For a gaussian correlation function, R is given by:

En Vwkxk121R( /,xJ)=exp /-xJk
k=l

where, ndv is the number of design variables and Wkare the unknown correlation parameters used to fit

the model and :_ and :_ are the kth components of the sample points. The best values for the correlation

parameters (Wk) are obtained by solving a k-dimensional unconstrained optimization problem of the

following form:

Max-
wk >0

A) lnR
ns ln 17 2 +

2

In this phase, we have to calculate determinant of a covariant matrix repeatedly during

unconstrained function minimization. The size of this square matrix, R, as mentioned

previously is the number of sampled data points. The number of variables (Wk) of this

fitting optimization problem is the same as the number of design variables of the design

problem. In some cases, using a single correlation parameter gives sufficiently accurate

approximations.

The approximation to output y(x) at untried values of x is given by:



y(_)=/)+r_(_)R-__-j/}

where, f is colunm vector of length n_ which is filled with ones when fix) is taken as a constant

and,

(j J)/3 - rR-1 -if rR-1 Y

r_(x)_[_(_,xl),R(_,x2;...,R(_,xn_)]_

A flow diagram of the Kriging surrogate models based optimization procedure is shown below.
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[ EX,T] ok
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LAPPROXiMATOR]

Figure 1: Flow diagram of Kriging approximation concepts based Optimization



2.3 Pareto Multicriterion Trade-Offs:

Typically, in an engineering system optimization many different criteria are involved and the designers

and disciplinary experts would like to have trade-off information available for deciding how best to

balance the various criteria to arrive at the most desirable design. It is common industry practice to

perform trade-off analysis among the specified design criteria. Trade-off analysis is the study of the

relationship between multiple competing design requirements/constraints in order to define more

balanced targets for the optimization. Trade-off analysis is used in constructing Pareto curves (in 2D)

and surfaces (in 3D), that separate the feasible region from the infeasible region. Balanced targets for

design requirements/constraints are identified from these Pareto curves/surfaces. However, trade-off

curves themselves should not be viewed as a unique relation between the design

requirements/constraints.

Pareto trade-off curves generation will involve performing several optimizations by gradually varying the

bounds on one design constraint at a time while keeping the other constraint targets fixed and plotting

the change in the design objective. With the understanding that the Pareto optimal surface/curve

generation could be a costly process involving several optimization analyses, Kriging approximation

models will be exploited to achieve the desired computational efficiency.

2.4 Design Process Integration - Model Center COTS framework:

A COTS process integration framework called ModelCenter [5] for integrating the different

tools/component (including spreadsheets) is used to in this project for integrating all the analysis codes

and performing the Kriging approximations based MDO problem solution. ModelCenter based on

JAVA provides a highly visual environment to link applications and map key data from one analysis tool

to another. ModelCenter also facilitates linldng application tools residing on different computers within a

network. Once the data is linked, a driver component (such as Optimizer, DOE or Parametric Trade

Study) can iterate with the linked simulation model to optimize the variables.

A JAVA based optimization driver is used with ModelCenter framework for the MDO solution. The

core optimization solver is ADS, a numerical optimization code that includes several continuous

optimization algorithms [6]. The JAVA driver also incorporates the Kriging metamodel for

approximations, described in Section 2.2. The optimization driver developed within ModelCenter is

generic and can be used with or without the Kriging metamodel based approximations concept.

A flow diagram of the sequence of steps in the MDO process is shown in Figure 2. It includes the

sampling strategies described in Section 2.1 for generating the design points, followed by concurrent

multidisciplinary analysis of the design points on SGI Origin 2000, 256 processor machine at NASA

Ames facility. The results are processed and used for constructing the Kriging approximation model.

The MDO problem is then solved using the Kriging approximation model for design objectives and

constraints evaluation. After convergence (satisfaction of Kuhn-Tucker conditions) with respect to the

approximation model, a detailed analysis is performed is verify the satisfaction of constraints and the
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relativechangein theobjectivesbetweensuccessivecycles.At thisstagethehumanengineerscanalso
reviewtheresultsandmakechangesasnecessary.
Thenthecompleteprocessisrepeatedtill asatisfactorydesignisobtained.

Uniform Sampling to Generate 1.,

Samples based on Number of J"Processors available

I

I Concurrent Processing of MDA on 1
NASA Ames Origin 2000

256 processors machine

I

Kriging MetaModel Construction 1for Response Approximations

Inner Loop

Multidisciplinary Optimization 1

Update Variables & Perform

Multidisciplinary Analysis (MDA)

Outer Loop

Post processing

Figure 2: MDO methodology in a High Performance Computing environment

3.0 Application Problems and Solutions

Two design examples are considered:

- Air Borne Laser (ABL) Optical Bench MDO for structures, thermal and optical line of sight

disciplines (detailed composites ply layup design).

- Conceptual design of a supersonic business aircraft MDO involving Aerodynamics, Structures and

Propulsion disciplines.
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3.1 Air Borne Laser (ABL) Optical Bench MDO:

ABL is a laser weapon system, carried on a 747-400F aircraft, designed to autonomously detect, track

and destroy hostile theater ballistic missiles in the boost phase. Team ABL includes the USAF, Boeing,

TRW and Missiles & Space. ABL will operate above the clouds, where it will detect and track missiles

as they are launched using an onboard surveillance system. The Beam Control/Fire Control system will

acquire the target, then accurately point and fire the laser with sufficient energy to destroy a missile while

it is still in the highly vulnerable boost phase of fight-before separation of its warheads. The Beam

Control/Fire Control system includes the Beam Transfer, Fire Control, and Turret Assemblies.

LEP Bench

End Beam

Diagnostic Bench

Fwd Fitting

\

\

Isolator

3 Parameter

Isolator

Aft Pedestal

LRO Bracket

Strongback Z

Figure 3: FEM of ABL Optical Bench

The Wavefront Control Subsystem of the ABL compensates for local and atmospheric disturbances by

measuring wavefronts of outgoing and return beams with the Wavefront Sensor (WFS), then processing

the measurements to provide actuator commands to the deformable mirrors (DM) and then the
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actuators warp the surface of the DMs to correct the wavefront error.

The WFS misregistration is the misalignment between DM actuators and WFS sub-apertures caused by

initial alignment errors, mechanical vibration, acoustics, thermal loads, etc.

The WFS and DMs are located on the main optical bench. Hence it is important that the main optical

bench structure be sufficiently stiff to reduce the WFS Misregistration while being within a weight

budget. The optical bench design is a composite design with ply layup being a critical driver in the

structural stiffness and strength characteristics as well as thermal deformations. A finite element model of

the optical bench is shown in Figure 3.

WFS Misregistration = (Optical Bench Structural Response)*(Optical Line-Of-Site Coefficients)

where:

Structural Response = 6 degrees-of-freedom displacements (translation & rotation) of the 8 optics

between the WFS and ACDM due to vibration loads or thermal loads; and,

Line-Of-Site (LOS) coefficients = misregistration per unit displacement of each optic.

For Structural and Thermal analysis, the MSC.Software (MSC/NASTRAN v70.7) is used and a

Lockheed Martin in-house code called GALPRO is used for the Optical LOS analysis.

The ABL Optical Bench MDO problem, that is a focus of this work, is formulated as follows:

Optimize the Composites Bench Ply Layup thickness, to:

Minimize_

Subject to constraints on:

WFS Misregistration

Bench Structural Weight < allowable value;

Bench Mode Frequency < allowable value;

Thermal deformations at each optic < allowable value;

Bounds on the ply layup thickness.

A total of 10 design variables are considered.

The MDO process integration is performed using ModelCenter and is shown in Figure 4. The

MSC/NASTRAN analyses for Weights, Thermal and Modal Frequency responses are performed on

the SGI origin 2000, 256 processor machine at NASA Ames, California while the Optical LOS

computations are performed on SGI Origin machine at Lockheed Martin Aeronautics in Denver,

Colorado. The MSC/NASTRAN analyses on the sampling algorithm generated design points are

performed concurrently on the Ames multiprocessor machine for higher throughput. The modal

frequency response analysis, which is the time consuming analysis among all the disciplinary analyses, is

performed using the Distributed Memory Parallel (dmp) capability in MSC/NASTRAN v70.7 for faster

turn around in analysis computer times. Benchmark computer times for this DMP based modal

frequency response analysis using different number of processors are provided in Table 2.
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Figure 4: ABL MDO Process Integration with ModelCenter
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Design Variables Initial Cycle 3 Lower Upper

(in.) (in.) (in.)
pcompl&2 (LEL & HEL panels- 4/core/4 plies) 0.125 0.25 0.1 0.25

pcomp3 (outer longerons - 4plies) 0.2 0.2 0.2 0.5

pcomp4 (inner longerons - 4 plies) 0.1 0.1013 0.1 0.25

pcomp5 (inner vertical shear webs - 4 plies) 0.1 0.1 0.1 0.25

pcomp6 (inner horizontal gussets - 4 plies) 0.1 0.1023 0.1 0.25

pcomp7 (outer vertical end plates - 4 plies) 0.25 0.3071 0.25 0.5

pcompl4 (LEL bench facesheets -4 plies) 0.125 0.101 0.1 0.25

pcompl6 (Diag bench facesheets -4 plies) 0.125 0.1 0.1 0.25

pcomp22 (3PT End Beam - 4 plies) 0.125 0.1443 0.125 0.25

pcomp23 (3PT End Beam - 4 plies) 0.25 0.25 0.25 0.5

Responses Initial Final

WFS Dynamic Misregistration (% of 3.148 1.98 (Approx. 1.98)

subaperture) 37% Reduction

Weight (lbs-mass) 5413 5517.4 (Approx. 5517)

2% Increase

Bench Mode (Hz) 39.96 43. (Approx. 43.8)

WFS Thermal Misregistration (%) 1.143 1.124 (Approx. 1.12)

Table 1: ABL MDO Problem Results

Number of Processors

Elapsed Time (mins) 96.3

2

60.9

4

43.8

8

32.5

Table 2: Elapsed computing times for a single MSC.Nastran SOL111 run

on a SGI Origin 2000, 256 processor, 250 MHz machine
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Thefollowingprovidesastepbystepcomparisonof theelapsedcomputer times involved in the

sequential MDO process and the massively parallel processing based MDO process.

Case 1: On a single processor of SGI Origin 2000:

1. Baseline analyses (3 MSC/NASTRAN solutions and 2 GALPRO computations): 115 min

2. Cycle 1 - analyses of 32 samples: 115 * 32 = 3680 min

3. Approximate model construction: < 15 min

4. Optimization based on approximate model: < 3 min

5. Cycle 1 - optimum point analyses: 115 min

6. Cycle 2 - analyses of 32 samples: 115 * 32 = 3680 min

7. Update Approximate model with new samples: < 20 min

8. Optimization based on approximate model: < 3 min

9. Cycle 2 - optimum point analyses: 115 min

10.5 additional analysis for Pareto point solutions: 5 * 115 = 575 min

The total elapsed time on single processor: 8320 minutes or 139 hours

Case 2: Massively parallel processing with SGI Origin 2000:

In this case we use 4 processors for each MSC/NASTRAN dynamics analysis (fine-grained

parallelism) and further use all of the remaining 256 processors of SGI Origin 2000 for concurrent

processing of MSC/NASTRAN runs for different design inputs (coarse-grained parallelism). The

elapsed times provided below are an estimate based on the benchmark runs shown in Table 2.

1. Baseline analyses (3 MSC.N solutions and 2 GALPRO computations): 49 min

2. Cycle 1 - analyses of 32 samples concurrently: 49 min

3. Approximate model construction: < 15 min

4. Optimization based on approximate model: < 3 min

5. Cycle 1 - optimum point analyses: 49 min

6. Cycle 2 - analyses of 32 samples concurrently: 49 min

7. Update Approximate model with new samples: < 20 min

8. Optimization based on approximate model: < 3 min

9. Cycle 2 - optimum point analyses: 49 min

10.5 additional analysis for Pareto point solutions: 5 * 49 = 245 min

The total elapsed time for the massively parallel approach is 530 minutes or 8.8 hours. The elapsed time

reduction is 16X compared to serial solution.

Figure 5 shows the Pareto trade off curve between design objective (Misregistration) and the active

constraint (Weight). Each point in this curve is generated based on an MDO solution using the Kriging
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approximation model, with the active constraint upper bound relaxed by a certain %. In this Pareto

study, the upper bound on Weight constraint I varied from the baseline of 54.2 to 55 to 55.2 to 55.7 to

56 to 56.2.

4

_3

_,2

0

Misregistration.vs. WeightParetoTrade-Offs

\

54.15 55 55.2 55.7 56 56.2

Optical Bench Normalized Weight (/bs)

Figure 5: Pareto Optimal Trade-Off curve for Misregistration versus Weight

By relaxing weight in step 1 from 54.2 to 55, two of the design variables doubled in value (100%

change) from the baseline and this reduced the design objective, Misregistration, by about 30%. The

two variables correspond to those of HEL (high-energy laser) and LEL (low energy laser) panel

thickness. These 2 parameters have the largest effect on Misregistration. Relaxing the weight constraint

further in successive Pareto steps did not bring down the Misregistration that dramatically, since the

remaining 8 design variables did not influence Misregistration to such an extent. More significant

reductions in Misregistration can only be obtained by increasing the upper bound on the 2 critical (HEL

& LEL panel) thickness but the ABL design engineer did not want those panels to be further increased

in thickness. Hence, after Pareto step 1, further significant reduction in Misregistration is not possible.

3.2 Aircraft Optimization

In this example, a supersonic business jet modeled as a coupled system of structures (BB 1),

aerodynamics (BB2), propulsion (BB3), and aircraft range (BB4) is used. This problem is identical to

the one used in Reference [7], and complete details of the problem can be obtained from the same

reference. A data flow diagram of the coupled system analysis is shown in Figure 6.
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Themathematicalformulationof theMDOproblemis asfollows:

Maximize: AircraftRange(F(X))
Subjectto constraintson:

Stressonwing< 1.09;(Gj(X),j=l,5)
0.96< Wingtwist < 1.04;(Gj(X),j=6,7)
Pressuregradient< 1.04;(Gj(X),j=8)
0.5< EngineScalefactor< 1.5;(Gj(X),j=9,10)
EngineTemperature< 1.02;(Gj(X),j= 11)
Throttlesetting< TUA;(Gj(X),j=12)

Thereareatotalof 10designvariables,X, including,thickness/chordratio,altitude,Machnumber,
aspectratio,wing sweep,wingsurfacearea,taperratio,wingboxcross-section,skinfrictioncoefficient,
andthrottle.

Structures

Aerodynamics

Constants

r

Propulsion

Range

AR-aspect ratio
Cf-skin frict, coef.
D-drag
ESF-eng. scale fact.
h-altitude
L-lift
M-Mach #

Nz-max. load fact.
R-range
SFC-spec. fuel cons.
Smcv-wing surf. area
T-throttle
t/c-thickness/chord

WBE-baseline eng. wt.
WE-engine weight
Wv-fuel weight
Wvo-misc. fuel wt
Wo-misc. weight
WT-total weight
x-wingbox x-sect
A-wing sweep
)v-taper ratio

Figure 6: Data flow diagram for Aircraft MDO problem
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The following MDO procedure is used with this aircraft problem.

1) Generate using the Hypersphere method (outlined in Section 2.1.2), NDP number of design points

with the center of the hypersphere located at the baseline design point. Here NDP is equal to 128.

2) Perform concurrent analyses of the NDP design points using the NASA Ames SGI Origin 2000,

256 processor machine. Compute the design objectives and constraints as stated in the above

MDO problem.

3) Identify the "best" design point in terms of usability and feasibility from the set of NDP design points.

4) Construct an approximation model using the Kriging method (outlined in Section 2.2) using the

NDP design points inputs and outputs.

5) Perform MDO problem solution based on the approximation model of Step 4.

6) Perform verification analysis on the optimal design obtained in Step 5. Check for satisfaction of

constraints and relative changes in the objective function.

7) Perform any necessary modifications to the model, optimization problem formulation, etc.., based

on the interpretation of solution from Step 6.

8) If not converged, revise the design move-limits and generate a new set of NDP design points that is

now centered at optimal point of Step 6. Go to Step 2 and repeat the process till convergence.

Cycle Number Hypersphere DOE Sampling

- Best design point from the sample

set of 128 points

Hypersphere DOE Sampling followed by

Kriging Approximation based Optimization

using the 128 design points

Objective Max Constraint Objective Max Constraint

Baseline 535.78 +0.16 (violated) 535.78 +0.16 (violated)

Cycle 1 1201.72 +0.01 (violated) 1548.3 +0.007 (active)

Cycle 2 2062.40 +0.009 2879.4 +0.003 (feasible)

Cycle 3 2359.5 +0.007 3015.5 +0.008

Cycle 4 2765.8 +0.009 3061.1 +0.003

Table 3: Aircraft MDO problem results.

The results shown in the above Table 3 provide a comparison of the best points obtained purely from

the sampling algorithm versus an approximation model based optimization using the sample points. The

successive cycles start with the best point found in the previous cycle (either from sample set points or

from optimization solution). If constraints are more violated than the previous cycle and if the design is

infeasible then sampling space is shrunk by a reduction factor of 50%. It is important to note that the
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optimizationsolutionis significantlybetterthanthehyperspheresamplingbasedbestpoint.It isalso
importantto notethattheapproximationmodelbasedoptimizationisnotcomputationallyintensive.

4.0 Summary

In this work, the following methods have been investigated for MDO solution of realistic aerospace

design problems in a multi-processor, high performance computing environment.

- Design space sampling strategies in conjunction with concurrent processing on a SGI Origin 2000

HPC server;

- Design space approximation using Kriging procedure and subsequently optimization with Kriging

models; and,

- Design space Pareto trade-off analyses using Kriging models.

In addition, a commercial-off-the-shelf (COTS) design process integration framework, Model Center,

is used with the MDO study. ModelCenter facilitates integration across a meta computing environment

involving a cluster of PCs, workstations and ItPC servers with multiple processors.

The applications used in this work include:

- MDO of a Air Borne Laser (ABL) Composites Optical Bench for structures, thermal and optical

line of sight disciplines;

- Conceptual design of a supersonic business aircraft involving Aerodynamics, Structures and

Propulsion disciplines.

The present approach to MDO investigated in this work is comparatively simpler than the existing

approaches, involving a design space sampling strategy that exploits concurrent processing, an

approximation method for constructing approximations to the design objectives and constraints, and, an

optimizer. Based on the trends in massively parallel processing and HPC (High Performance

Computing), it is expected that the MDO methods will become simpler as well as easier to understand

and use with complex design problems. The HPC environment operating concurrently with a large

number of processors will offset the computational cost/time required for performing the required

number of system and local disciplinary analyses.
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